白细胞介素-33改善ob/ob小鼠糖脂代谢紊乱的作用研究

鲁憬莉, 郭小丽, 梁艳, 赵峻洁, 孟海阳

中国药学杂志 ›› 2020, Vol. 55 ›› Issue (19) : 1590-1595.

PDF(4303 KB)
PDF(4303 KB)
中国药学杂志 ›› 2020, Vol. 55 ›› Issue (19) : 1590-1595. DOI: 10.11669/cpj.2020.19.007
论著

白细胞介素-33改善ob/ob小鼠糖脂代谢紊乱的作用研究

  • 鲁憬莉1,2, 郭小丽3, 梁艳1,2, 赵峻洁1,2, 孟海阳1,2
作者信息 +

IL-33 Improves Glucose-Lipid Metabolism Disorders in ob/ob Mice

  • LU Jing-li1,2, GUO Xiao-li3, LIANG Yan1,2, ZHAO Jun-jie1,2, MENG Hai-yang1,2
Author information +
文章历史 +

摘要

目的 研究白细胞介素-33(IL-33)对ob/ob小鼠糖脂代谢紊乱的作用及其可能机制。方法 ob/ob小鼠随机分为模型组和IL-33给药组(每只0.5 μg),连续给药4周,每周测定血糖和体重。给药2周后进行腹腔内葡萄糖耐量实验,给药结束后检测血清胆固醇和甘油三酯水平,对肝脏、脂肪、胰腺进行组织学分析,并对脂肪组织炎症因子、脾淋巴细胞Cd73Cd39的mRNA水平,以及肝脏组织核受体进行检测。结果 结果显示,IL-33显著降低ob/ob小鼠血糖、体重,改善葡萄糖耐量,降低血清甘油三酯水平。IL-33减少肝脏组织脂肪聚集,降低脂肪细胞的大小,维持胰岛正常结构。IL-33降低脂肪组织炎症因子Ccl2Il1a的mRNA水平,提高脾淋巴细胞Cd73Cd39的mRNA水平。同时,IL-33升高肝脏X受体(LXR)和过氧化物酶体增殖物激活受体(PPARγ)的表达。结论 IL-33对糖脂代谢的调节作用可能与改善炎症反应和影响核受体的表达有关。

Abstract

OBJECTIVE To investigate the effects of cytokine IL-33 on glucose-lipid metabolism disorder and its underlying mechanism. METHODS Ob/ob mice were injected for 4 weeks with IL-33 (0.5 μg·mice-1, every other day) or PBS. Body weight and blood glucose were measured weekly. After two weeks, glucose tolerance tests were performed. After administration, histological analyses for liver, fat and pancreatic tissues were performed. The mRNA expression of inflammatory factors in fat tissues, Cd73 and Cd39 in splenic lymphocytes, as well as protein expression of nuclear receptors in liver tissues were detected. RESULTS The results showed that IL-33 decreased body weight and blood glucose, improved glucose tolerance, and reduced serum triglyceride in ob/ob mice. IL-33 reduced lipid accumulation in liver tissues, decreased adipocyte size, and maintained the islet morphology and structural integrity. IL-33 decreased the mRNA expression of Ccl2 and Il1a, whereas increased the expression of Cd73 and Cd39. Further analysis revealed that IL-33 increased expression of nuclear receptors LXR and PPARγ. CONCLUSION The effect of IL-33 on inflammatory response and nuclear receptors might contribute to the improvement of glucose-lipid metabolism in ob/ob mice.

关键词

IL-33 / 糖脂代谢 / 炎症反应 / 核受体

Key words

IL-33 / glucose-lipid metabolism / inflammatory response / nuclear receptors

引用本文

导出引用
鲁憬莉, 郭小丽, 梁艳, 赵峻洁, 孟海阳. 白细胞介素-33改善ob/ob小鼠糖脂代谢紊乱的作用研究[J]. 中国药学杂志, 2020, 55(19): 1590-1595 https://doi.org/10.11669/cpj.2020.19.007
LU Jing-li, GUO Xiao-li, LIANG Yan, ZHAO Jun-jie, MENG Hai-yang. IL-33 Improves Glucose-Lipid Metabolism Disorders in ob/ob Mice[J]. Chinese Pharmaceutical Journal, 2020, 55(19): 1590-1595 https://doi.org/10.11669/cpj.2020.19.007
中图分类号: R965   

参考文献

[1] CAYROL C, GIRARD J P. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev, 2018, 281(1):154-168.
[2] GRIESENAUER B, PACZESNY S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol, 2017, 8:475.
[3] PEINE M, MAREK R M, LOHNING M. IL-33 in T cell differentiation, function, and immune homeostasis. Trends Immunol, 2016, 37(5):321-333.
[4] LU J, KANG J, ZHANG C, et al. The role of IL-33/ST2L signals in the immune cells. Immunol Lett, 2015, 164(1):11-17.
[5] SALTIEL A R, OLEFSKY J M. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest, 2017, 127(1):1-4.
[6] MCLAUGHLIN T, ACKERMAN S E, SHEN L, et al. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest, 2017, 127(1):5-13.
[7] CHEN X, YANG L, DU G. Research progress of urotensin Ⅱ on energy metabolism in type 2 diabetes. Chin Pharm J(中国药学杂志), 2018, 53(22):1885-1889.
[8] DE OLIVEIRA M F A, TALVANI A, ROCHA-VIEIRA E. IL-33 in obesity: where do we go from here?. Inflamm Res, 2019, 68(3):185-194.
[9] LU J, LIANG Y, ZHAO J, et al. Interleukin-33 prevents the development of autoimmune diabetes in NOD mice. Int Immunopharmacol, 2019, 70:9-15.
[10] ODEGAARD J I, LEE M W, SOGAWA Y, et al. Perinatal licensing of thermogenesis by IL-33 and ST2. Cell, 2016, 166(4):841-854.
[11] CIPOLLETTA D, FEUERER M, LI A, et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 2012, 486(7404):549-553.
[12] HAN J M, WU D, DENROCHE H C, et al. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J Immunol, 2015, 194(10):4777-4783.
[13] GROSS B, PAWLAK M, LEFEBVRE P, et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol, 2017, 13(1):36-49.
[14] MARCIANO D P, CHANG M R, CORZO C A, et al. The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARgamma, RORs, and Rev-erbs. Cell Metab, 2014, 19(2):193-208.
[15] GRINBERG-BLEYER Y, BAEYENS A, YOU S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med, 2010, 207(9):1871-1878.
[16] ROSENZWAJG M, LORENZON R, CACOUB P, et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis, 2019, 78(2):209-217.
[17] MILLER A M, ASQUITH D L, HUEBER A J, et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res, 2010, 107(5):650-658.
[18] DALMAS E, LEHMANN F M, DROR E, et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity, 2017, 47(5):928-942.
[19] VIJAYAN D, YOUNG A, TENG M W L, et al. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer, 2017, 17(12):765.
[20] SAUER A V, BRIGIDA I, CARRIGLIO N, et al. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood, 2012, 119(6):1428-1439.
[21] PETERSEN M C, SHULMAN G I. Mechanisms of insulin action and insulin resistance. Phys Rev, 2018, 98(4):2133-2223.
[22] LIN C Y, GUSTAFSSON J A. Targeting liver X receptors in cancer therapeutics. Nat Rev Cancer, 2015, 15(4):216-224.
[23] LOU X, TORESSON G, BENOD C, et al. Structure of the retinoid X receptor alpha-liver X receptor beta (RXRalpha-LXRbeta) heterodimer on DNA. Nat Struct Mol Biol, 2014, 21(3):277-281.
[24] LAFFITTE B A, CHAO L C, LI J, et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA, 2003, 100(9):5419-5424.
[25] SCHULMAN I G. Liver X receptors link lipid metabolism and inflammation. FEBS Lett, 2017, 591(19):2978-2991.
[26] HUANG W, GLASS C K. Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler Thromb Vasc Biol, 2010, 30(8):1542-1549.

基金

国家自然科学基金青年科学基金项目资助(81603122)
PDF(4303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/